安科瑞電氣有限公司
摘要:現階段由于充電站內的電費計量模塊不能接入電網公司電表系統,電網公司需額外加裝電表獲取充電數據。設計了一種基于儲能電表的充電站,整合電表與充電站的重復功能模塊。利用STM32F103C8T6微控制器結合控制器局域網絡總線完成充電站與儲能電表之間的電氣連接和交互控制,并進行了樣機開發驗證。結果表明相較于傳統充電站,基于儲能電表的充電站可以簡化充電站結構,降低充電站制造、安裝成本,更好地實現電動汽車和電網間的互聯。
關鍵詞:電動汽車;儲能電表;充電站;樣機開發
0引言
近年來我國電動汽車(ElectricVehicle,EV)銷量持續猛增,根據預測2021年中國新能源汽車銷量或將超過180萬輛,相較2020年銷量同比增長明顯。一方面持續增長的EV充電負荷會產生新的充電高峰,對電網運行造成沖擊,另一方面,EV充電負荷有很強的時空靈活性和儲能特性,可作為電網的后備電源。這就對電網的優化調度和EV的配套充電設施性能提出了更高的要求。為充分發揮EV移動儲能特性,緩解EV充電對電網的不利影響,電網公司需要掌握EV的實時充電信息。
現有的充電站內部雖然有獨立的電費計量模塊,但是由于電網公司對其計量結果并不認可,因此未接入到電網公司電表系統,使得電網公司無法直接獲取準確的EV充電數據。現有的解決方案是在充電站端口額外加裝一塊電網公司電表。由于加裝電表和充電站在電費計量功能的重復性,這種方案不僅增加了充電設施體積還增加了充電設施制造、安裝成本。
針對此問題,考慮到儲能電表以智能芯片為核心,具有電能計量、自動控制、信息交互等功能的特點,本文設計了一種基于儲能電表的充電站,對現有儲能電表進行改裝,拓展充電站控制功能,完成充電站和電表的有機結合。首先在儲能電表中加入充電控制模塊,然后使用控制器局域網絡(ControllerAreaNetwork,CAN)總線連接電表和充電槍等器件,通過儲能電表的控制模塊對充電過程進行控制,并加裝漏電保護裝置、急停按鈕以及防護外殼等器件。將儲能電表拓展為一個完整的充電站。本文介紹了基于儲能電表的充電站硬件組成部分,隨后進行樣機開發驗證,之后總結現有方案的不足,展望了技術發展方向。
1基于儲能電表的充電站硬件設計
電動汽車要完整的實現充電流程,離不開電能輸送裝置和電能計量裝置?,F有的充電站和加裝在其端口的電網公司電表有很多相同功能模塊,具體如圖1所示。
相同的功能模塊不僅使充電設施整體結構更加復雜,更增加了制造成本。在設計過程中考慮基于可接入電網公司系統的儲能電表進行拓展,使其具備充電站控制功能,將充電站和電表進行整合。基于儲能電表的充電站主要包括儲能電表、充電站和前端斷路器三部分,其結構如圖2所示。從電網側引入的火線和零線依次接入儲能電表和充電站,以便儲能電表對于通過火線和零線輸入的電能進行采樣和計量及充電站向EV輸出電能。
1.1儲能電表部分
基于DDSY1352型單相儲能智能電能表進行設計開發,儲能電表的主控單元采用STM32F103C8T6微控制器作為核心控制器件,控制RS485通信模塊、電源模塊、液晶顯示器(LiquidCrystalDisplay,LCD)、采樣模塊以及充電站完成相應功能。主控單元組成結構如圖3所示。
電源模塊采用MC33063ADR2G電源芯片,經過內置降壓器降壓后,為其他各功能模塊提供電能,其主要電路如圖4所示。
通信模塊方面,在大數據時代背景下為了設備間的通信,選用無線傳輸距離更遠、傳輸速率更高、支持多站通信的RS485通信模塊。儲能電表中的采樣模塊經過分壓電阻、采樣電阻、電流互感器獲得電壓信號、火線電流信號和零線電流信號用于電能計量。LCD屏可顯示充電費用、充電時長、充電電量、充電狀態等內容。時鐘復位電路用以保證時間的準確性。對于電表和充電站之間的連接及控制問題,使用實時性強、傳輸距離較遠、抗電磁干擾能力強的CAN總線連接實現。此外儲能電表內部還設有一組繼電器,微控制單元(MicrocontrollerUnit,MCU)可通過控制繼電器的開合來控制充電站輸出電能。在實際應用過程中,MCU根據卡片感應信號、電能電量計量信號以及按鍵信號等信號,綜合判斷是否滿足設定的充電電量、充電時長、充電費用等結束充電條件或者判斷充電站是否出現異常狀態。MCU根據判斷結果控制繼電器的開合。
1.2充電站部分
充電站主要包括充電槍、讀卡器、蜂鳴器以及數據傳輸單元(DataTransferUnit,DTU)四部分。儲能電表控制模塊中MCU通過相互獨立地電連接并控制充電槍和讀卡器進而完成對充電站的控制。充電槍的輸入端通過線束連接儲能電表采樣模塊輸出端的火線和零線,充電槍的輸出端(槍頭)可插入EV的充電接口。讀卡器用于讀寫用戶卡片的卡片感應信息,并且將卡片感應信息轉換為相應的卡片感應信號并傳輸至MCU控制器。充電站還設有一個蜂鳴器用于提示充電站運行狀態?;趦δ茈姳淼某潆娬痉譃閱螜C版和網絡版兩種版本,其中網絡版為了完成數據的無線傳輸,設有DTU轉換器,可插入SIM(SubscriberIdentityModule)卡進而接入無線網絡,實現充電站與客戶端、服務端的互聯。
1.3前端斷路器
為了用電的安全性,基于儲能電表的充電站設置一個前端斷路器??紤]到直流充電站的應用越來越廣泛,選擇對直流電和交流電都起保護作用,保護范圍更*的A型斷路器。
2樣機開發驗證
2.1樣機介紹
基于儲能電表的充電站電表部分相較于普通電表,設置了雙層防護殼以及漏電保護器,進一步提升了安全防護能力。其中*層防護殼帶有物理鎖,工作人員可使用鑰匙開鎖打開*層防護殼操作漏電保護器,*層防護殼使用螺絲固定。電表的LCD顯示屏具有兩種顯示模式,即自動循環顯示模式和按鍵觸發顯示模式。當按鍵被觸發時,形成按鍵信號的同時背光燈自動啟動,便于操作人員進行操作。在用戶操作時,蜂鳴器根據用戶不同的操作狀態、充電站運行狀態下發出不同的蜂鳴聲。在電表側面設置一個急停裝置,在緊急情況下可按下紅色按鈕直接斷開充電站與電網的連接,及時停止充電,保護用戶生命、財產安全,避免事故進一步惡化。在上述經過改裝的儲能電表基礎上采用CAN總線連接充電線槍等器件*終構成完整的充電站,具體如圖5所示。
2.2樣機測試
在樣機開發后,為驗證基于儲能電表的充電站安全性,對其進行過壓保護、過流保護、短路保護、漏電保護等項目測試,具體測試要求如表1所示。測試結果顯示基于儲能電表的充電站具備良好的安全性能,可以穩定地為EV充電。
3實際應用
在實際應用中,單機版基于儲能電表的充電站為即插即用式。用戶將充電槍插入EV,充電站開始為EV充電直至電滿后自動斷開。用戶可在電表的LCD屏上查詢充電狀態、充電時間、充電電壓、充電電流等具體充電信息。網絡版基于儲能電表的充電站配備客戶端支持用戶設定充電需求、查看充電詳細信息,用戶在充電前需下載相應APP(Application),其使用流程如圖6所示。
用戶需要充電時,首先在客戶端查看附近可用充電站具體位置。用戶到達相應位置后,首先將充電槍插入EV,然后使用APP掃描充電站身二維碼設定充電需求,充電APP界面如圖7所示,并將啟動命令發送至云端服務器。
具體操作界面如圖7a)所示。確認信息后服務器將啟動命令發送到充電站DTU,充電站收到指令后啟動充電。在充電過程中用戶可以查看充電時間、充電電量、充電功率、充電電壓等詳細充電信息,具體界面如圖7b)所示。充電結束后,用戶會收到充電結算清單,包括具體充電電量、充電費用等信息,具體如圖7c)所示。
在實際應用中,基于儲能電表的充電站在保證充電穩定性和充電效率的情況下相較傳統充電站額外加裝電網公司電表的方式,制造、安裝成本可以降低約15%,并且基于儲能電表的充電站相較于普通充電站所需空間更小,可適應空間相對狹小的環境。
4 Acrel-2000MG充電站微電網能量管理系統
4.1平臺概述
Acrel-2000MG微電網能量管理系統,是我司根據新型電力系統下微電網監控系統與微電網能量管理系統的要求,總結國內外的研究和生產的先進經驗,專門研制出的企業微電網能量管理系統。本系統滿足光伏系統、風力發電、儲能系統以及充電站的接入,*進行數據采集分析,直接監視光伏、風能、儲能系統、充電站運行狀態及健康狀況,是一個集監控系統、能量管理為一體的管理系統。該系統在安全穩定的基礎上以經濟優化運行為目標,促進可再生能源應用,提高電網運行穩定性、補償負荷波動;有效實現用戶側的需求管理、消除晝夜峰谷差、平滑負荷,提高電力設備運行效率、降低供電成本。為企業微電網能量管理提供安全、可靠、經濟運行提供了全新的解決方案。
微電網能量管理系統應采用分層分布式結構,整個能量管理系統在物理上分為三個層:設備層、網絡通信層和站控層。站級通信網絡采用標準以太網及TCP/IP通信協議,物理媒介可以為光纖、網線、屏蔽雙絞線等。系統支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。
4.2平臺適用場合
系統可應用于城市、高速公路、工業園區、工商業區、居民區、智能建筑、海島、無電地區可再生能源系統監控和能量管理需求。
4.3系統架構
本平臺采用分層分布式結構進行設計,即站控層、網絡層和設備層,詳細拓撲結構如下:
5充電站微電網能量管理系統解決方案
5.1實時監測
微電網能量管理系統人機界面友好,應能夠以系統一次電氣圖的形式直觀顯示各電氣回路的運行狀態,實時監測光伏、風電、儲能、充電站等各回路電壓、電流、功率、功率因數等電參數信息,動態監視各回路斷路器、隔離開關等合、分閘狀態及有關故障、告警等信號。其中,各子系統回路電參量主要有:相電壓、線電壓、三相電流、有功/無功功率、視在功率、功率因數、頻率、有功/無功電度、頻率和正向有功電能累計值;狀態參數主要有:開關狀態、斷路器故障脫扣告警等。
系統應可以對分布式電源、儲能系統進行發電管理,使管理人員實時掌握發電單元的出力信息、收益信息、儲能荷電狀態及發電單元與儲能單元運行功率設置等。
系統應可以對儲能系統進行狀態管理,能夠根據儲能系統的荷電狀態進行及時告警,并支持定期的電池維護。
微電網能量管理系統的監控系統界面包括系統主界面,包含微電網光伏、風電、儲能、充電站及總體負荷組成情況,包括收益信息、天氣信息、節能減排信息、功率信息、電量信息、電壓電流情況等。根據不同的需求,也可將充電,儲能及光伏系統信息進行顯示。
子界面主要包括系統主接線圖、光伏信息、風電信息、儲能信息、充電站信息、通訊狀況及一些統計列表等。
5.1.1光伏界面
5.1.2儲能界面